
1

MMAT5030 Notes 9

1. L2-Theory

Recall some spaces:

• R[−π, π] or R2π, the space of Riemann integrable functions on [−π, π],

• R1
2π, the space of improperly Riemann integrable functions on [−π, π],

• R2
2π, the space of all functions whose squares are improperly Riemann integrable on

[−π, π],

• R1(R), the space of all improperly Riemann integrable functions on (−∞,∞),

• R2(R), the space of all functions whose squares are improperly Riemann integrable
on (−∞,∞),

• S, the Schwartz class consisting of all infinitely many times differentiable functions
whose derivatives are all rapidly decreasing on (−∞,∞).

It is known that neither R1(R) is contained in R2(R) nor the other way around. For
instance, the function f(x) = 1/

√
x, x ∈ (0, 1) and equals to 0 elsewhere belongs to R1(R)

but not to R2(R) and the function g(x) = 1/x, x ∈ (1,∞), and equals to 0 elsewhere
belongs to R2(R) but not to R1(R).

In Notes 4 we study L2-theory in the periodic case. For f ∈ R[−π, π], we proved that

lim
n→±∞

‖f −
n∑

k=−n

cne
−nx‖ = 0 ,

as well as the Parseval’s Identity

‖f‖2 = 4π
∞∑

n=−∞

|cn|2 .

(It is

‖f‖2 =
π

2
a20 + π

∞∑
n=1

(
a2n + b2n

)
,

where an and bn are the Fourier coefficients of the real-valued function f .) We point that
the same proofs actually show that these two results hold for all functions in R2

2π.

Now, the Fourier transform maps S bijectively onto itself. We have

Proposition 9.1. For f, g ∈ S,
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(a)

〈f̂ , ĝ〉 = 2π〈f, g〉 ,

and

(b)

‖f̂‖2 = 2π‖f‖2 .

(a) shows that the Fourier transform preserves the inner product (up to a constant 2π)
and (b) is the analogous Parseval’s Identity.

Proof. We have

2π〈f, g〉 = 2π

ˆ
f(x)g(x) dx

=

ˆ ˆ
f(x)eiξxĝ(ξ) dξ dx (inverse Fourier transform )

=

ˆ ˆ
f(x)e−ξxĝ(ξ) dx dξ

= 〈f̂ , ĝ〉 .

Taking f = g, we obtain (b).

To describe the full L2-theory we need to extend R2(R) to the Lebesgue space. Let
L2(R) be the space consisting of all square Lebesgue integrable functions. We list some
facts on this space:

• R2(R) ⊂ L2(R). In fact, the Lebesgue integral of a function is equal to its Riemann
integrable whenever the latter exists.

• Every Cauchy sequence in L2(R) converges to some function in L2(R). This is the
key property. R2(R) does not enjoy this property.

• Again L(R), which contains R1(R), does not belong to L2(R) and again L2(R) does
not belong to L1(R). The same examples above confirm this.

• The Schwartz class S ⊂ L2(R). Moreover, for each f ∈ L2(R), there is a sequence
fn in S satisfying ‖f − fn‖ → 0 as n→∞.

Whenever ‖fn − f‖ → 0, fn ∈ S and f ∈ L2(R), applying the last property to the

Parseval’s Identity yields ‖f̂n− f̂m‖2 = 2π‖fn−fm‖2 which implies that {f̂n} is a Cauchy
sequence. Therefore, by the second fact it converges to some function ϕ ∈ L2(R). We

define f̂ = ϕ. It is not hard to see that this definition is independent of the choice of
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{fn}. It means that the Fourier transform can be extended from S to S to a linear map
from L2(R) to L2(R). Using Proposition 9.1, it is easy to show

Theorem 9.2. The extension Fourier transform is a linear bijective map from L2(R) to
itself. For f, g ∈ L2(R),

(a).

〈f̂ , ĝ〉 = 2π〈f, g〉 ,
and

(b).

‖f̂‖2 = 2π‖f‖2 .

2. Convolution of Functions

For f and g in S, their convolution is defined to be

f ∗ g(x) =

ˆ
f(x− y)g(y) dy .

Elementary properties of the convolution product are listed below.

Proposition 9.3. For f, g, h ∈ S, then f ∗ g ∈ S and the followings hold:

(a)
f ∗ (ag + bh) = af ∗ g + bf ∗ h , a, b ∈ C,

(b)
f ∗ g = g ∗ f ,

(c)
f ∗ (g ∗ h) = (f ∗ g) ∗ h ,

(d)
(f ∗ g)′ = f ′ ∗ g = f ∗ g′ ,

(e)

f̂ ∗ g = f̂ ĝ ,

(f)

f̂ ∗ ĝ = 2πf̂g .
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The proofs of (a)-(f) are straightforward. The proof of (f) is done by showing that
they are equal after taking Fourier transform which is done below. As Fourier transform
is bijective on S, (f) implies (e). Now, the left hand side is

̂̂
f ∗ ĝ(x) =

̂̂
f(x)̂̂g(x) = 4π2f(−x)g(−x) ,

after using the formula
̂̂
f(x) = 2πf(−x). On the other hand, the right hand side is

2π
̂̂
fg(x) = 4π2(fg)(−x) = 4π2f(−x)g(−x) ,

done.

We refer to 7.1 in Text for a discussion of the meaning of the convolution. It becomes
relevant in Fourier transform for two reasons. First, (e) and (f) in Proposition 9.3 show
that the ordinary pointwise product goes over to the convolution under the Fourier trans-
form. Second, it is used in the proof of the inversion formula (which we omit, see Text
for more).

3. Initial Value Problem for the Heat Equation

As an application of Fourier transform we derive a representation formula for the so-
lution of the heat equation in the real line.

Consider the Cauchy problem for the 1-D heat equation{
ut = κuxx , κ > 0, in R× [0, T ),
u(x, 0) = g(x) x ∈ R. (1)

Cauchy problem is also called the initial value problem. There is no boundary condition
when the underlying domain is the entire real number. To derive a formula for this Cauchy
problem we take Fourier transform on both sides of the equation (fix t): By Proposition
8.2

ût(ξ, t) = κ(iξ)2û(ξ, t) = −κξ2û(ξ, t) .

Regarding ξ as a parameter, this is a linear ODE whose solution is given solution is

û(ξ, t) = Ce−kξ
2t.

To satisfy the initial condition, we should take C = ĝ(ξ). So taking inverse transform,

u(x, t) =
1

2π

ˆ
eix·ξû(ξ, t)dξ

=
1

2π

ˆ
eix·ξe−κξ

2tĝ(ξ)dξ

=
1

2π

ˆ ˆ
eix·ξe−κξ

2te−iξyg(y)dydξ

=
1

2π

ˆ (ˆ
e−κξ

2t−iξ(y−x)dξ

)
g(y)dy .



5

From last lecture we have the formula

F(e−ax
2/2) =

√
2π

a
e−ξ

2/2a .

Taking a = 2κt, we arrive at the following formula for the solution

u(x, t) =
1√

4πκt

ˆ ∞
−∞

e−
(x−y)2

4κt g(y)dy . (2)

It is a bit hard to justify all steps we get this formula, so the best way is to prove
directly that this formula gives a solution to the initial value problem (1). In the following
we simply take κ = 1. We define the heat kernel to be

K(x, t) =
1√
4πt

e−
x2

4t .

Notice that K is not defined at t = 0. We have the following easily verified facts:

(a) For t > 0, K satisfies the heat equation for κ = 1,

(b) K > 0 and
´
K(z, t)dz = 1, ∀t > 0.

(c)
´
|z|≥δK(z, t)→ 0 as t→ 0, ∀ fixed δ > 0.

Theorem 9.4 Let u be the function defined (2) (κ = 1). Suppose that g is a continuous
and bounded function in R. Then u solves the heat equation for (x, t) ∈ R× (0,∞), and
u(x, t) tends to g(x) as t→ 0.

Proof. This proof can be skipped. For t > 0, the heat kernel decays very fast. Using this
fact one can show differentiation and integration commute in the solution formula (2).
Hence u solves the heat equation for positive time.

The real job is to show that u realizes the initial condition. To this end we define a
function U in R× [0,∞) by setting

U(x, t) =

{
u(x, t), x ∈ R, t > 0
g(x), x ∈ R, t = 0

(Notice that the heat kernel is not well-defined at t = 0. So u is only defined for t > 0).
We need to show that U ∈ C(R × [0,∞)). Since U is continuous for t > 0, it suffices to
consider its continuity at (x0, 0).

Fix x0 ∈ R and for t > 0. By Fact (b)

|U(x, t)− U(x0, 0)|
= |u(x, t)− g(x0)|

=

∣∣∣∣ˆ K(x− y, t)g(y)dy − g(x0)

∣∣∣∣
=

∣∣∣∣ˆ K(x− y, t)
(
g(y)− g(x0)

)
dy

∣∣∣∣
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As g is continuous, for ε > 0, there is some δ0 such that

|g(y)− g(x0)| <
ε

2
, if |y − x0| < δ0,

so ∣∣∣∣ˆ
|y−x0|<δ0

K(x− y, t)
(
g(y)− g(x0)

)
dy

∣∣∣∣ <
ε

2

ˆ
|y−x0|<δ0

K(x− y, t)dy

<
ε

2

ˆ ∞
−∞

K(x− y, t)dy

=
ε

2
.

On the other hand, letting M = sup |g(x)|, by Fact (c) there exists a small δ1 > 0 such
that ∀t ∈ [0, t0], ˆ

|y−x|≥δ0/2
K(x− y, t)dy < ε

4M
.

For x satisfying |x− x0| < δ0/2, we have, by the triangle inequality, |y − x| ≥ |y − x0| −
|x0 − x| ≥ δ0/2 for y satisfying |y − x0| ≥ δ0. Therefore,∣∣∣∣ˆ

|y−x0|≥δ0
K(x− y, t)

(
g(y)− g(x0)

)
dy

∣∣∣∣ ≤ 2M

ˆ
|y−x0|≥δ0

K(x− y, t)dy

≤ 2M

ˆ
|y−x|≥δ0/2

K(x− y, t)dy

= 2M

ˆ
|z|≥δ1

K(z, t)dz

<
ε

2
.

It follows that for any ε > 0, there exist δ1 and δ2 = δ0/2 such that

|U(x, t)− g(x0)| <
ε

2
+
ε

2
= ε, ∀x, t, |x− x0| < δ2 = δ0/2, 0 ≤ t < δ1.

A remarkable property of the heat equation is its smoothing property.

Proposition 9.5 Assuming that g is bounded and continuous in R, the solution given
by (3.2.2) is smooth in ([a, b]× [t,∞)) for any t > 0.

Proof. This proof can be skipped. This follows from the boundedness ofˆ ∣∣Dk
xK(x− y, t)g(y)

∣∣ dy, ˆ ∣∣Dk
tK(x− y, t)g(y)

∣∣ dy,
for any order k.
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The next property is infinite speed of propagation. Consider a perturbation of the
initial data g by some small function h > 0, the disturbance being very small, and
vanishing outside the small interval (y − δ, y + δ) where y is far away from x. Denote u
the solution to the unperturbed problem and v the solution to the perturbed one. The
solution has finite speed of propagation if v is equal to u at x for sufficiently small t.
Otherwise it is infinite. It is easy to see that, for

v(x, t) =

ˆ
K(x− y, t)(g + h)dy,

we have

v(x, t)− u(x, t) =

ˆ
K(x− y, t)h(y)dy =

ˆ b

a

K(x− y, t)h(y)dy

By Fact (b) v(x, t) 6= u(x, t) for all time. This shows that the solution of the heat equation
propagates at infinite speed. Certainly this is unrealistic. A spark on the moon can’t be
detected instantly on Earth. Our model is simply an approximate one. More realistic
models are available. However, all of them are nonlinear equations.

It is clear that the solution decays to 0 as time goes to infinity. Since the energy keeps
dissipating and there is no boundary condition, the temperature should tend to zero as
t→∞. In fact, using

u(x, t) =
1√
4πt

ˆ
e−

(x−y)2
4t g(y)dy,

we have

|u(x, t)| ≤ M√
4πt
→ 0, as t→∞ provided g is bounded.


